Ultraviolet optomechanical crystal cavities with ultrasmall modal mass and high optomechanical coupling rate
نویسندگان
چکیده
Optomechanical crystal (OMC) cavities which exploit the simultaneous photonic and phononic bandgaps in periodic nanostructures have been utilized to colocalize, couple, and transduce optical and mechanical resonances for nonlinear interactions and precision measurements. The development of near-infrared OMC cavities has difficulty in maintaining a high optomechanical coupling rate when scaling to smaller mechanical modal mass because of the reduction of the spatial overlap between the optical and mechanical modes. Here, we explore OMC nanobeam cavities in gallium nitride operating at the ultraviolet wavelengths to overcome this problem. With a novel optimization strategy, we have successfully designed an OMC cavity, with a size of 3.83 × 0.17 × 0.13 μm3 and the mechanical modal mass of 22.83 fg, which possesses an optical mode resonating at the wavelength of 393.03 nm and the fundamental mechanical mode vibrating at 14.97 GHz. The radiation-limited optical Q factor, mechanical Q factor, and optomechanical coupling rate are 2.26 × 107, 1.30 × 104, and 1.26 MHz, respectively. Our design and optimization approach can also serve as the general guidelines for future development of OMC cavities with improved device performance.
منابع مشابه
Femtogram dispersive L3-nanobeam optomechanical cavities: design and experimental comparison.
We present the design and experimental comparison of femtogram L3-nanobeam photonic crystal cavities for optomechanical studies. Two symmetric nanobeams are created by placing three air slots in a silicon photonic crystal slab where three holes are removed. The nanobeams' mechanical frequencies are higher than 600 MHz with ultrasmall effective modal masses at approximately 20 femtograms. The op...
متن کاملParametric optomechanical oscillations in two-dimensional slot-type high-Q photonic crystal cavities
We experimentally demonstrate an optomechanical cavity based on an air-slot photonic crystal cavity with optical quality factor Qo1⁄4 4.2 10 and a small modal volume of 0.05 cubic wavelengths. The optical mode is coupled with the in-plane mechanical modes with frequencies up to hundreds of MHz. The fundamental mechanical mode shows a frequency of 65 MHz and a mechanical quality factor of 376. T...
متن کاملDesign of dispersive optomechanical coupling and cooling in ultrahigh-Q/V slot-type photonic crystal cavities.
We describe the strong optomechanical dynamical interactions in ultrahigh-Q/V slot-type photonic crystal cavities. The dispersive coupling is based on mode-gap photonic crystal cavities with light localization in an air mode with 0.02(λ/n)3 modal volumes while preserving optical cavity Q up to 5×10(6). The mechanical mode is modeled to have fundamental resonance Ωm/2π of 460 MHz and a quality f...
متن کاملHigh-mechanical-frequency characteristics of optomechanical crystal cavity with coupling waveguide
Optomechanical crystals have attracted great attention recently for their ability to realize strong photon-phonon interaction in cavity optomechanical systems. By far, the operation of cavity optomechanical systems with high mechanical frequency has to employ tapered fibres or one-sided waveguides with circulators to couple the light into and out of the cavities, which hinders their on-chip app...
متن کاملOptimized optomechanical crystal cavity with acoustic radiation shield
We present the design of an optomechanical crystal nanobeam cavity that combines finite-element simulation with numerical optimization, and considers the optomechanical coupling arising from both moving dielectric boundaries and the photo-elastic effect. Applying this methodology results in a nanobeam with an experimentally realized intrinsic optical Q-factor of 1.2× 10, a mechanical frequency ...
متن کامل